SOME APPLICATIONS OF THE INEQUALITY OF
ARITHMETIC AND GEOMETRIC MEANS TO
POLYNOMIAL EQUATIONS

HERBERT S. WILF

The purpose of this note is to point out a simple generalization of
the inequality
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of arithmetic and geometric means, which will hold when the argu-
ments of the complex numbers 2, - - -, 2, are suitably restricted.
We shall apply the resulting inequality to the roots of polynomial
equations, obtaining first a quantitative form of the Gauss-Lucas
theorem, and then some relationships between the coefficients of a
polynomial and the size of a sector containing its roots.

1. The inequality. The basic result is

TueoreM 1. Suppose
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which case equality holds.
Proor. We have
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as claimed. All signs of equality hold only when
(@ Im(z14 « - - +2,) =0

(3) (b) cosd; =cos¢y (i=1,2,---,m)
(c) l21|=[z2[= ...__:lznl

which imply the configuration stated in the theorem. For odd # the
constant sec ¢ is only asymptotically best possible.

2. Application to polynomials. Let
4) Pie)=artaz+ -+t a.z"=a.(z—321) (22— 2.)

be given and let K denote the convex hull of the zeros z, * - -, 2,
of P(z). Let z be outside K, and suppose that, from 2, K subtends an
angle 2y. Then the spread in the arguments of the numbers
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is at most 2y, and from Theorem 1,
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But this is just the assertion that
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and we have proved

THEOREM 2. If 2 is a point from which the convex hull of the zeros of
the polynomial P(z) of degree n subtends an angle 2y <, then

6) | P'(a)| = n| a, [t1n(cos ¢) | P(z) |-arm,
CoROLLARY 1. The zeros of P'(2) lie in the convex hull of the zeros of
P(z) (Gauss-Lucas).

COROLLARY 2. If the zeros of P(2) lie in the unit circle, then we have
for |z| >1,
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THEOREM 3. The zeros of the polynomial
P(i)=ao+ az+ - - - + a.z,

are not contained in any sector of ceniral angle less than

an [ 0 1/n—k
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Proor. Suppose the zeros of P(2) lie in a sector of angle 2y <.
From Theorem 1,
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Applying this result to

E (v 4 k)
pog = & LD, L
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which, by Corollary 1 also satisfies the hypotheses, we find

a,,(n)
ay k

and the result follows.

nay, —1/ (n—k)

secy = (k=0,1,:--,n—1),

an—1

TuEOREM 4. Under the hypotheses of Theorem 2, let p denote the dis-
tance from z to the center of gravity of the zeros of P(2). Then

O | P(2) l = l a,,l (o secy)™.
ProoF. Apply Theorem 1 to the numbers 2—z, « - -, 2—3,.
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